HYNIX SEMICONDUCTOR INC.
8-BIT SINGLE-CHIP MICROCONTROLLERS

HMS99C51 HMS99C52

User's Manual (Ver. 1.0)

Иииіх

Version 1.0
Published by
MCU Application Team
©2002 Hynix semiconductor All right reserved.

Additional information of this manual may be served by Hynix semiconductor offices in Korea or Distributors and Representatives listed at address directory.

Hynix semiconductor reserves the right to make changes to any information here in at any time without notice.
The information, diagrams and other data in this manual are correct and reliable; however, Hynix semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

Device Naming Structure

HMS99C5X Series Selection Guide

Operating Voltage (V)	ROM size (bytes)	RAM size (bytes)	Device Name	Operating Frequency (MHz)
	FLASH		HMS99C51	40
$4.5 \sim 5.5$	4 K	256	HMS99C52	40

HMS99C51

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40 MHz (for more detail, see "HMS99C5X Series Selection Guide")
- X2 Speed Improvement capability (X2 Mode : 6 clocks/machine cycle) $20 \mathrm{MHz} @ 5 \mathrm{~V}$ (Equivalent to $40 \mathrm{MHz} @ 5 \mathrm{~V}$)
- 4K bytes FLASH ROM
- 128×8 Bit RAM
- 64 K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Two 16-bit Timers / Counters
- USART
- Programmable ALE pin enable / disable (Low EMI)
- Five interrupt sources, two priority levels
- Power saving Idle and power down mode
- P-DIP-40, P-LCC-44, P-MQFP-44 package
- Temperature Ranges : $-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$

Block Diagram

HMS99C52

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40 MHz (for more detail, see "HMS99C5X Series Selection Guide")
- X2 Speed Improvement capability (X2 Mode : 6 clocks/machine cycle) $20 \mathrm{MHz} @ 5 \mathrm{~V}$ (Equivalent to $40 \mathrm{MHz} @ 5 \mathrm{~V}$)
- 8K bytes FLASH ROM
- 256×8 Bit RAM
- 64 K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
- USART
- One clock output port
- Programmable ALE pin enable / disable (Low EMI)
- Six interrupt sources, two priority levels
- Power saving Idle and power down mode
- P-DIP-40, P-LCC-44, P-MQFP-44 package
- Temperature Ranges : $-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$

Block Diagram

PIN CONFIGURATION

44-PLCC Pin Configuration (top view)

N.C.: Do not connect

40-PDIP Pin Configuration (top view)

44-MQFP Pin Configuration (top view)

N.C.: Do not connect.

Logic Symbol

PIN DEFINITIONS AND FUNCTIONS

Symbol	Pin Number			Input/ Output	Function
	$\underset{44}{\text { PLCC- }}$	$\begin{gathered} \text { PDIP- } \\ 40 \end{gathered}$	$\underset{44}{\text { MQFP- }}$		
P1.0-P1.7	$2-9$ 2 3 2	1-8	$40-44$ 1-3 40 41 40	I/O	Port1 Port 1 is an 8 -bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1 s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the pulls-ups (I_{L}, in the DC characteristics). Pins P1.0 and P1.1 also. Port1 also receives the low-order address byte during program memory verification. Port1 also serves alternate functions of Timer 2. P1.0 / T2 :Timer/counter 2 external count input P1.1 / T2EX :Timer/counter 2 trigger input In HMS99C52: P1.0 / T2, Clock Out : Timer/counter 2 external count input, Clock Out
P3.0-P3.7	$\begin{gathered} 11, \\ 13-19 \end{gathered}$	10-17	5, 7-13	I/O	Port 3 Port 3 is an 8 -bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1 s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 3 pins that are externally pulled low will source current because of the pulls-ups (I_{L}, in the DC characteristics). Port 3 also serves the special features of the 80C51 family, as listed below.
	11	10	5		P3.0 / RxD receiver data input (asynchronous) or data input output(synchronous) of serial interface 0
	13	11	7		P3.1 / TxD transmitter data output (asynchronous) or clock output (synchronous) of the serial interface 0
	14	12	8		P3.2 /INT0 interrupt 0 input/timer 0 gate control
	15	13	9		P3.3 / $\overline{\text { INT1 }}$ interrupt 1 input/timer 1 gate control
	16	14	10		P3.4 /T0 counter 0 input
	17	15	11		P3.5/T1 counter 1 input
	18	16	12		P3.6 / $\overline{\mathrm{WR}}$ the write control signal latches the data byte from port 0 into the external data memory
	19	17	13		P3.7 / $\overline{R D} \quad$ the read control signal enables the external data memory to port 0
XTAL2	20	18	14	0	XTAL2 Output of the inverting oscillator amplifier.

Symbol	Pin Number			Input/ Output	Function
	$\underset{44}{\text { PLCC- }}$	$\begin{gathered} \text { PDIP- } \\ 40 \end{gathered}$	$\underset{44}{\text { MQFP- }}$		
XTAL1	21	19	15	1	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise fall times specified in the AC characteristics must be observed.
P2.0-P2.7	24-31	21-28	18-25	I/O	Port 2 Port 2 is an 8 -bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 2 pins that are externally pulled low will source current because of the pulls-ups (I_{IL}, in the DC characteristics). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16 -bit addresses (MOVX @DPTR). In this application it uses strong internal pull-ups when emitting 1 s . During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 special function register.
$\overline{\text { PSEN }}$	32	29	26	0	The Program Store Enable The read strobe to external program memory when the device is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
RESET	10	9	4	1	RESET A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to $V_{\text {SS }}$ permits power-on reset using only an external capacitor to V_{CC}.

Symbol	Pin Number			Input/ Output	Function
	$\underset{44}{\mathrm{PLCC}-}$	$\underset{40}{\text { PDIP- }}$	$\underset{44}{\text { MQFP- }}$		
$\frac{\mathrm{ALE} /}{\mathrm{PROG}}$	33	30	27	0	The Address Latch Enable / Program pulse Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input ($\overline{\mathrm{PROG}}$) during EPROM programming. If desired, ALE operation can be disabled by setting bit 0 of SFR location $8 \mathrm{E}_{\mathrm{H}}$. With this bit set, the pin is weakly pulled high. The ALE disable feature will be terminated by reset. Setting the ALE-disable bit has no affect if the microcontroller is in external execution mode.
$\overline{\mathrm{EA}} / \mathrm{V}_{\mathrm{PP}}$	35	31	29	1	External Access Enable / Program Supply Voltage EA must be external held low to enable the device to fetch code from external program memory locations 0000_{H} to $\mathrm{FFFF}_{\mathrm{H}}$. If $\overline{\mathrm{EA}}$ is held high, the device executes from internal program memory unless the program counter contains an address greater than its internal memory size. This pin also receives the 12.75 V programming supply voltage (VPP) during EPROM programming. Note; however, that if any of the Lock bits are programmed, $\overline{E A}$ will be internally latched on reset.
P0.0-P0.7	36-43	32-39	30-37	I/O	Port 0 Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1 s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the GMS97X5X. External pull-up resistors are required during program verification.
VSS	22	20	16	-	Circuit ground potential
$V_{C C}$	44	40	38	-	Supply terminal for all operating modes
N.C.	$\begin{gathered} 1,12 \\ 23,34 \end{gathered}$	-	$\begin{gathered} 6,17 \\ 28,39 \end{gathered}$	-	No connection

FUNCTIONAL DESCRIPTION

The HMS99C5X series is fully compatible to the standard 8051 microcontroller family.
It is compatible with the general 8051 family. While maintaining all architectural and operational characteristics of the general 8051 family.

Figure 1 shows a block diagram of the HMS99C5X series

Figure 1. Block Diagram of the HMS99C5X series

CPU

The HMS99C5X series is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in $1.0 \mu \mathrm{~s}$ ($40 \mathrm{MHz}: 300 \mathrm{~ns}$).

Special Function Register PSW

	MSB							LSB			
Bit No.	7	6	5	4	3	2	1	0			
Addr. DO_{H}	CY	AC	F0	RS1	RS0	OV	F1	P			
	PSW										

Bit		Function
CY		Carry Flag
AC		Auxiliary Carry Flag (for BCD operations)
FO		General Purpose Flag
RS1	RSO	Register Bank select control bits
0	0	Bank 0 selected, data address $00_{\mathrm{H}}-07_{\mathrm{H}}$
0	1	Bank 1 selected, data address $08 \mathrm{H}_{\mathrm{H}}-0 \mathrm{~F}_{\mathrm{H}}$
1	0	Bank 2 selected, data address $10 \mathrm{H}-1 \mathrm{H}_{\mathrm{H}}$
1	1	Bank 3 selected, data address $18 \mathrm{H}-1 \mathrm{~F}_{\mathrm{H}}$
OV		Overflow Flag
F1		General Purpose Flag
P		Parity Flag Set/cleared by hardware each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.

Reset value of PSW is 00_{H}.

SPECIAL FUNCTION REGISTERS

All registers, except the program counter and the four general purpose register banks, reside in the special function register area.

The 28 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.

All SFRs are listed in Table 1, Table 2, and Table 3.
In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which refer to the functional blocks of the HMS99C5X series. Table 3 illustrates the contents of the SFRs

Table 1. Special Function Registers in Numeric Order of their Addresses (cont'd)

Address	Register	Contents after Reset	Address	Register	Contents after Reset
80H	P0 ${ }^{1)}$	FFH	88H	TCON ${ }^{1)}$	00H
81 H	SP	07H	89H	TMOD	00H
82H	DPL	00H	8AH	TLO	00H
83H	DPH	00H	8BH	TL1	00H
84H	reserved	XXH ${ }^{\text {2) }}$	8CH	TH0	00H
85H	reserved	XXH ${ }^{\text {2) }}$	8DH	TH1	00H
86H	reserved	XXH ${ }^{2}$	8EH	AUXR0	XXH ${ }^{\text {2) }}$
87H	PCON	OXXX0000 ${ }_{\text {B }}{ }^{2)}$	8FH	CKCON	XXXXXXX0 ${ }_{\text {B }}{ }^{2)}$
90 H	P1 ${ }^{1)}$	FF_{H}	98H	SCON ${ }^{1)}$	OOH
91H	reserved	$0^{0} \mathrm{H}$	99 H	SBUF	XXH ${ }^{\text {2) }}$
92 H	reserved	$\mathrm{XXH}^{2)}$	9AH	reserved	XXH ${ }^{2}$
93H	reserved	XXH ${ }^{2)}$	9BH	reserved	XXH ${ }^{2)}$
94H	reserved	XXH ${ }^{2}$	9 CH	reserved	XXH ${ }^{2}$
95H	reserved	XXH ${ }^{2)}$	9DH	reserved	XXH ${ }^{\text {2) }}$
96H	reserved	XXH ${ }^{2)}$	9EH	reserved	XXH ${ }^{2}$
97H	reserved	XXH ${ }^{2)}$	9FH	reserved	XXH ${ }^{2)}$
AOH	P2 ${ }^{3}$	FFH	A8H	IE ${ }^{1)}$	OX000000B ${ }^{\text {2) }}$
A1H	reserved	XXH ${ }^{\text {2) }}$	A9H	reserved	XXH ${ }^{2)}$
A2H	reserved	XXH ${ }^{\text {2) }}$	AAH	reserved	XXH ${ }^{\text {2) }}$
A3H	reserved	XXH ${ }^{2)}$	ABH	reserved	XXH ${ }^{2)}$
A4H	reserved	XXH ${ }^{\text {2) }}$	ACH	reserved	XXH ${ }^{2)}$
A5H	reserved	$\mathrm{XXH}^{2)}$	ADH	reserved	XXH^{2}
A6H	reserved	$\mathrm{XXH}^{2)}$	AEH	reserved	$\mathrm{XXH}^{2)}$
A7H	reserved	XXH ${ }^{2}$	AFH	reserved	$\mathrm{XXH}^{2)}$
BOH	P3 ${ }^{1)}$	FFH	B8H	IP ${ }^{1)}$	XX000000B ${ }^{2)}$
B1H	reserved	XXH ${ }^{\text {2) }}$	B9H	reserved	XXH ${ }^{\text {2) }}$
B2H	reserved	XXH ${ }^{\text {2) }}$	BAH	reserved	XXH ${ }^{\text {2) }}$
B3H	reserved	XXH ${ }^{\text {2) }}$	BBH	reserved	XXH ${ }^{2}$
B4H	reserved	XXH ${ }^{2)}$	BCH	reserved	XXH ${ }^{\text {2) }}$
B5H	reserved	XXH ${ }^{2}$	BDH	reserved	XXH ${ }^{2}$
B6H	reserved	XXH ${ }^{2}$	BEH	reserved	XXH ${ }^{2}$
B7H	reserved	XXH ${ }^{2}$	BFH	reserved	XXH ${ }^{2}$

Table 1. Special Function Registers in Numeric Order of their Addresses (cont'd)

Address	Register	Contents after Reset	Address	Register	Contents after Reset
COH C 1 H C 2 H C 3 H C4H C 5 H C6H C7H	reserved reserved reserved reserved reserved reserved reserved reserved		$\begin{gathered} \mathrm{CBH}^{3)} \\ \mathrm{CPH}^{4)} \\ \mathrm{CAH}^{3)} \\ \mathrm{CBH}^{3)} \\ \mathrm{CCH}^{3)} \\ \mathrm{CDH}^{3)} \\ \mathrm{CEH} \\ \mathrm{CFH} \end{gathered}$	T2CON ${ }^{1)}$ T2MOD RC2L RC2H TL2 TH2 reserved reserved	$\begin{gathered} \mathbf{0 0 H} \\ \text { XXXXXO0 }_{\mathrm{B}}{ }^{2)} \\ 00 \mathrm{H} \\ 00 \mathrm{H} \\ 00 \mathrm{H} \\ 00 \mathrm{H} \\ \mathrm{XXH}^{2)} \\ \mathrm{XXH}^{2)} \end{gathered}$
DOH D1H D2H D3H D4H D5H D6H D7H	PSW ${ }^{1)}$ reserved reserved reserved reserved reserved reserved reserved	$\begin{aligned} & \text { FFH } \\ & X_{X H}{ }^{2)} \\ & X X H H^{2)} \\ & X X H^{2)} \end{aligned}$	D8H D9H DAH DBH DCH DDH DEH DFH	reserved reserved reserved reserved reserved reserved reserved reserved	$\mathrm{XXH}^{2)}$ $X X H H^{2)}$
EOH E1H E2H E3H E4H E5H E6H E7H	ACC ${ }^{1)}$ reserved reserved reserved reserved reserved reserved reserved	$\begin{aligned} & \mathbf{O O H} \\ & X^{2} H^{2)} \\ & X^{2} H^{2)} \\ & X X H^{2)} \end{aligned}$	E8H E9H EAH EBH ECH EDH EEH EFH	reserved reserved reserved reserved reserved reserved reserved reserved	$\mathrm{XXH}^{2)}$ $X X H H^{2)}$
FOH F1H F2H F3H F4H F5H F6H F7H	B ${ }^{1)}$ reserved reserved reserved reserved reserved reserved reserved	$\begin{gathered} \mathbf{O O H} \\ \mathbf{X X H}^{2)} \end{gathered}$	F8H F9H FAH FBH FCH FDH FEH FFH	reserved reserved reserved reserved reserved reserved reserved reserved	$\mathrm{XXH}^{2)}$ XXH^{2}

1) Bit-addressable Special Function Register.
2) X means that the value is indeterminate and the location is reserved.
3) Bit-addressable Special Function Register.
4) These Registers are in the HMS99C52 only.

Table 2. Special Function Registers - Functional Blocks

Block	Symbol	Name	Address	Contents after Reset
CPU	ACC B DPH DPL PSW SP	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Register Stack Pointer	EOH ${ }^{1)}$ FOH ${ }^{1)}$ 83H 82H DOH ${ }^{1)}$ 81H	$\begin{aligned} & 00 \mathrm{H} \\ & 07 \mathrm{H} \end{aligned}$
Interrupt System	$\begin{aligned} & \text { IE } \\ & \text { IP } \end{aligned}$	Interrupt Enable Register Interrupt Priority Register	$\begin{aligned} & \hline \mathbf{A 8 H} \mathbf{H}^{1)} \\ & \mathbf{B} 8 \mathbf{H}^{11)} \end{aligned}$	$\begin{aligned} & \hline \text { 0X000000B 2) } \\ & \text { XX000000B 2) } \end{aligned}$
Ports	$\begin{aligned} & \text { P0 } \\ & \text { P1 } \\ & \text { P2 } \\ & \text { P3 } \end{aligned}$	Port 0 Port 1 Port 2 Port 3	$\begin{aligned} & \mathbf{8 O H}^{1)} \\ & \mathbf{9 O H} \mathbf{H}^{1)} \\ & \mathbf{A O H} \mathbf{H}^{11} \\ & \mathbf{B O H} \end{aligned}$	FFH FFH FFH FFH
Serial Channels	$\begin{aligned} & \text { PCON }{ }^{3} \\ & \text { SBUF } \\ & \text { SCON } \end{aligned}$	Power Control Register Serial Channel Buffer Reg. Serial Channel 0 Control Reg.	$\begin{aligned} & 87 \mathrm{H} \\ & 99 \mathrm{H} \\ & 98 \mathrm{H}^{1)} \end{aligned}$	$\begin{aligned} & \text { OXXX0000B }{ }^{2)} \\ & \text { XXH }^{2)} \\ & 00 \mathrm{H} \end{aligned}$
Timer 0/ Timer 1	$\begin{aligned} & \text { TCON } \\ & \text { TH0 } \\ & \text { TH1 } \\ & \text { TLO } \\ & \text { TL1 } \\ & \text { TMOD } \end{aligned}$	Timer 0/1 Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register	$\begin{aligned} & \hline 88 \mathrm{H}^{1)} \\ & 8 \mathrm{CH} \\ & 8 \mathrm{DH} \\ & 8 \mathrm{AH} \\ & 8 \mathrm{BH} \\ & 89 \mathrm{H} \end{aligned}$	00 H 00 H
Timer 2	$\begin{aligned} & \text { T2CON } \\ & \text { T2MOD } \\ & \text { RC2H } \\ & \text { RC2L } \\ & \text { TH2 } \\ & \text { TL2 } \\ & \text { AUXR0 } \end{aligned}$	Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload Capture Reg., High Byte Timer 2 Reload Capture Reg., Low Byte Timer 2, High Byte Timer 2, Low Byte Aux. Register 0	C8H ${ }^{1)}$ C 9 H CBH CAH CDH CCH 8EH	$\begin{aligned} & 00 \mathrm{H} \\ & \text { XXXXXXOB }{ }^{2)} \end{aligned}$
Power Saving Modes	PCON ${ }^{3}$	Power Control Register	87H	0XXX0000B ${ }^{2}$

1) Bit-addressable Special Function register
2) X means that the value is indeterminate and the location is reserved
3) This special function register is listed repeatedly since some bit of it also belong to other functional blocks

Table 3. Contents of SFRs, SFRs in Numeric Order

Table 3. Contents of SFRs, SFRs in Numeric Order

Address	Register	Bit 7	6	5	4	3	2	1	0
81 H	SP								
82H	DPL								
83H	DPH								
87H	PCON	SMOD	-	-	-	GF1	GFO	PDE	IDLE
88H	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
89H	TMOD	GATE	C/T	M1	MT	GATE	C/T	M1	M0
8AH	TLO								
8BH	TL1								
8 CH	TH0								
8DH	TH1								
8EH	AUXRO	-	-	-	-	-	-	-	A0
8FH	CKCON	-	-	-	-	-	-	-	X2
90 H	P1								
98H	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99H	SBUF								
AOH	P2								
A8H	IE	EA	-	ET2	ES	ET1	EX1	ETO	EXO
BOH	P3								
B8H	IP	-	-	PT2	PS	PT1	PX1	PT0	PX0

Table 3. Contents of SFRs, SFRs in Numeric Order (cont'd)

\dagger indicates resident in the HMS99C52, not in HMS99C51.

A0 : ALE Signal Disable bit

- 0 : Enable ALE Signal (Generated ALE Signal)
- 1 : Disable ALE Signal (Not Generated ALE Signal)
${ }_{8 F H} \square \mid$ | | | | X X
X2 : CPU \& Peripheral Clock Select bit
- 0 : Select 12 clock periods per machine cycle

1 : Select 6 clock periods per machine cycle

T2OE : Timer2 Output Enable bit
0 : Disable Timer2 Output
1 : Enable Timer2 Output

SFR bit and byte addressable

SFR not bit addressable

- : this bit location is reserved

X2 MODE

The HMS99C5X core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

X2 Mode Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 2 . shows the clock generation block diagram. X2 bit is validated on XTAL1 $\div 2$ rising edge to avoid glitches when switching from X2 to STD mode. Figure 3.shows the mode switching waveforms:

Figure 2. Clock Generation Diagram
The X2 bit in the CKCON register allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature(X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 30 ms will then generate an interrupt every 15 ms . UART with 2400 baud rate will have 4800 baud rate.

Figure 3. Mode Swithcing Waveforms

TIMER / COUNTER 0 AND 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:
Table 4. Timer/Counter 0 and 1 Operating Modes

Mode	Description		TMOD			Input Clock	
			C/T	M1	M0	internal	external (Max.)
0	8-bit timer/counter with a divide-by-32 prescaler	X	X	0	0	fosc $\div(12 \times 32)$	fosc $\div(24 \times 32)$
1	16-bit timer/counter	X	X	0	1	fosc $\div 12$	fosc $\div 24$
2	8-bit timer/counter with 8-bit auto-reload	X	X	1	0	fosc $\div 12$	fosc $\div 24$
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	X	X	1	1	fosc $\div 12$	fosc $\div 24$

In the "timer" function $(\mathrm{C} / \mathrm{T}=" 0$ ") the register is incremented every machine cycle. Therefore the count rate is $\mathrm{f}_{\mathrm{OSC}} / 12$.

In the "counter" function the register is incremented in response to a 1 -to- 0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $\mathrm{f}_{\mathrm{OSC}} / 24$. External inputs $\overline{\mathrm{INT} 0}$ and $\overline{\mathrm{INT1}}$ (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. Figure 4 illustrates the input clock logic.

Figure 4. Timer/Counter 0 and 1 Input Clock Logic

TIMER 2

Timer 2 is a 16-bit timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which is selected by bit C/T2 (T2CON.1). It has three operating modes as shown in Table 5.
Table 5. Timer/Counter 2 Operating Modes

Mode	T2CON			T2MOD DCEN	$\begin{aligned} & \text { T2CON } \\ & \text { EXEN2 } \end{aligned}$	$\begin{aligned} & \text { P1.1/ } \\ & \text { T2EX } \end{aligned}$	Remarks	Input Clock	
	$\begin{aligned} & \text { RCLK or } \\ & \text { TCLK } \end{aligned}$	CP/RL2	TR2					internal	$\begin{aligned} & \text { external } \\ & \text { (P1.0/T2) } \end{aligned}$
16-bit AutoReload	0	0	1	0	0		reload upon overflow	fosc $\div 12$	Max. fosc $\div 24$
	0	0	1	0	1	\downarrow	reload trigger (falling edge)		
	0	0	1	1	$\begin{aligned} & x \\ & x \end{aligned}$	0	Down counting Up counting		
16-bit Capture	0	1	1	X	0	X	16 bit Timer/ Counter (only up-counting)	fosc $\div 12$	$\begin{gathered} \text { Max. } \\ \text { fosc } \div 24 \end{gathered}$
	0	1	1	X	1	\downarrow	capture TH2,TL2 \rightarrow RC2H,RC2L		
Baud Rate Generator	1		1	X	0	X	no overflow interrupt request (TF2)	fosc $\div 12$	$\begin{gathered} \text { Max. } \\ \text { fosc } \div 24 \end{gathered}$
	1	X	1	X	1	\downarrow	extra external interrupt ("Timer 2")		
Off	X	X	0	X	X	X	Timer 2 stops	-	-

Note: $\downarrow=$ Lfalling edge

SERIAL INTERFACE (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.
Table 6. USART Operating Modes

Mode	SCON		Baudrate	Description		
	SM0	SM1		Serial data enters and exits through RxD. TxD outputs the shift clock. 8-bit are transmit- ted/received (LSB first)		
0	0	0	$\frac{f_{\text {OSC }}}{12}$	Timer $1 / 2$ overflow rate		8-bit UART
:---						
10 bits are transmitted (through TxD) or received (RxD)						
1						

Table 7. Formulas for Calculating Baud rates

Baud Rate derived from	Interface Mode	Baudrate
Oscillator	0	$\frac{f_{\text {OSC }}}{12}$
	2	$\frac{2^{S M O D}}{64} \times f_{\text {OSC }}$
	1,3	$\frac{2^{S M O D}}{32} \times($ Timer 1 overflow $)$
	1,3	$\frac{2^{S M O D}}{32} \times \frac{f_{\text {OSC }}}{12 \times[256 \mathrm{D}(\text { TH1 })]}$
Timer 2	1,3	$\frac{f_{\text {OSC }}}{32 \times[65536 \mathrm{D}(\text { RC2H, RC2L })]}$

INTERRUPT SYSTEM

The HMS99C5X series provides 5 (4K bytes ROM version) or 6 (above 8 K bytes ROM version) interrupt sources with two priority levels. Figure 5 gives a general overview of the interrupt sources and illustrates the request and control flags.

Figure 5. Interrupt Request Sources

Table 8. Interrupt Sources and their Corresponding Interrupt Vectors

Source (Request Flags)	Vectors	Vector Address
RESET	RESET	0000 H
IE0	External interrupt 0	0003 H
TF0	Timer 0 interrupt	000 BH
IE1	External interrupt 1	0013 H
TF1	Timer 1 interrupt	001 BH
RI + TI	Serial port interrupt	0023 H
TF2 + EXF2	Timer 2 interrupt	002 BH

A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.

Table 9. Interrupt Priority-Within-Level

Interrupt Source		Priority
External Interrupt 0	IE0	High
Timer 0 Interrupt	TF0	\downarrow
External Interrupt 1	IE1	\downarrow
Timer 1 Interrupt	TF1	\downarrow
Serial Channel	RI + TI	\downarrow
Timer 2 Interrupt	TF2 + EXF2	Low

Power Saving Modes

Two power down modes are available, the Idle Mode and Power Down Mode.
The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If the Power Down mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview of the power saving modes.

Table 10. Power Saving Modes Overview

Mode	Entering Instruction Example	Leaving by	Remarks
Idle mode	ORL PCON, \#01H	- Enabled interrupt -Hardware Reset	CPU is gated off CPU status registers maintain their data. Peripherals are active
Power-Down mode	ORL PCON, \#02H	Hardware Reset	Oscillator is stopped, contents of on- chip RAM and SFR's are maintained (leaving Power Down Mode means redefinition of SFR contents).

In the Power Down mode of operation, V_{CC} can be reduced to minimize power consumption. It must be ensured, however, that V_{CC} is not reduced before the Power Down mode is invoked, and that V_{CC} is restored to its normal operating level, before the Power Down mode is terminated. The reset signal that terminates the Power Down mode also restarts the oscillator. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on reset).

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings
Ambient temperature under bias $\left(\mathrm{T}_{\mathrm{A}}\right)$. -40 to $+85^{\circ} \mathrm{C}$
Storage temperature $\left(\mathrm{T}_{\mathrm{ST}}\right)$ -65 to $+150^{\circ} \mathrm{C}$
Voltage on V_{CC} pins with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$ -0.5 V to 6.5 V
Voltage on any pin with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Input current on any pin during overload condition -10 mA to +10 mA
Absolute sum of all input currents during overload condition $|100 \mathrm{~mA}|$
Power dissipation 200mW

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During overload conditions ($V_{I N}>V_{C C}$ or $V_{I N}<V_{S S}$) the Voltage on VCc pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics

DC Characteristics for HMS99C51/52

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}+10 \%,-15 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		$\begin{aligned} & \text { Un } \\ & \text { it } \end{aligned}$	Test Conditions
		Min.	Max.		
Input low voltage (except EA, RESET)	VIL	-0.5	$0.2 \mathrm{~V}_{\text {cc }}-0.1$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input low voltage ($\overline{\mathrm{EA}}$)	$\mathrm{V}_{\text {IL } 1}$	-0.5	$0.2 \mathrm{~V}_{C C}-0.1$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input low voltage (RESET)	VIL2	-0.5	$0.2 \mathrm{~V}_{\mathrm{CC}}+0.1$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input high voltage (except XTAL1, EA, RESET)	V_{IH}	$\begin{gathered} 0.2 \mathrm{~V}_{\mathrm{CC}}+ \\ 0.9 \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
Input high voltage to XTAL1	V_{1+1}	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
Input high voltage to $\overline{\mathrm{EA}}$, RESET	$\mathrm{V}_{\mathrm{IH} 2}$	0.6 V cc	$\mathrm{V}_{\mathrm{Cc}}+0.5$	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
Output low voltage (ports 1, 2, 3)	V OL	-	0.45	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}{ }^{1)}$
Output low voltage (port 0, ALE, $\overline{\text { PSEN }}$)	VoL1	-	0.45	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\text {OL }}=3.2 \mathrm{~mA}{ }^{1)}$
Output high voltage (ports 1, 2, 3)	V_{OH}	$\begin{gathered} 2.4 \\ 0.9 V_{C C} \end{gathered}$	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \end{aligned}$
Output high voltage (port 0 in external bus mode, ALE, $\overline{\text { PSEN }}$)	VOH1	$\begin{gathered} 2.4 \\ 0.9 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}^{2)} \\ & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-80 \mu \mathrm{~A}^{2)} \end{aligned}$
Logic 0 input current (ports 1, 2, 3)	IIL	-10	-65	$\mu \mathrm{A}$	V IN $=0.45 \mathrm{~V}$
Logical 1-to-0 transition current (ports 1, 2, 3)	$\mathrm{I}_{\text {TL }}$	-65	-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
Input leakage current (port 0, EA)	ILI	-	± 1	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$
Pin capacitance	ClO_{1}	-	10	pF	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Power supply current: Active mode, $4 \mathrm{MHz}{ }^{3}$) Idle mode, $4 \mathrm{MHz}^{4}$) Active mode, $24 \mathrm{MHz}{ }^{4}$) Idle mode, $24 \mathrm{MHz}{ }^{4}$) Active mode, $40 \mathrm{MHz}{ }^{4}$) Idle mode, $40 \mathrm{MHz}{ }^{4}$) Power Down Mode 4)	Icc ICC Icc Icc Icc ICC IPD	-	$\begin{aligned} & 8 \\ & 4 \\ & 25 \\ & 10 \\ & 30 \\ & 15 \\ & 50 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~A} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{4)} \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{5} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}^{7} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}^{8)} \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{8)} \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{6)} \end{aligned}$

1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{O L}$ of ALE and port 3 . The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading: $>50 \mathrm{pF}$ at $3.3 \mathrm{~V},>100 \mathrm{pF}$ at 5 V), the noise pulse on ALE line may exceed 0.8 V . In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-trigger strobe input.
2) Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and $\overline{\mathrm{PSEN}}$ to momentarily fall below the $0.9 \mathrm{~V}_{\mathrm{CC}}$ specification when the address lines are stabilizing.
3) Icc Max at other frequencies is given by:
active mode: $I_{\text {CC }}=1.27 \times$ fosc +5.73
idle mode: $\quad I_{C C}=0.28 \times \mathrm{f}_{\mathrm{OSC}}+1.45$ (except OTP devices)
where f_{OS} is the oscillator frequency in MHz . I_{CC} values are given in mA and measured at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
4) Icc (active mode) is measured with:

XTAL1 driven with $\mathrm{t}_{\mathrm{CLCH}}, \mathrm{t}_{\mathrm{CHCL}}=5 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} ; \mathrm{XTAL} 2=\mathrm{N} . \mathrm{C} . ;$
$\overline{\mathrm{EA}}=$ Port0 $=$ RESET $=\mathrm{V}_{\mathrm{CC}}$; all other pins are disconnected. I_{CC} would be slightly higher if a crystal oscillator is used (appr. 1 mA).
5) I ICC (Idle mode) is measured with all output pins disconnected and with all peripherals disabled;

XTAL1 driven with $\mathrm{t}_{\mathrm{CLCH}}, \mathrm{t}_{\mathrm{CHCL}}=5 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$; XTAL2 $=\mathrm{N} . \mathrm{C} . ;$
RESET $=\overline{\mathrm{EA}}=\mathrm{V}_{\mathrm{SS}} ;$ Port0 $=\mathrm{V}_{\mathrm{CC}} ;$ all other pins are disconnected;
6) IPD (Power Down Mode) is measured under following conditions:
$\overline{\mathrm{EA}}=$ Port0 $=\mathrm{V}_{\mathrm{CC}} ;$ RESET $=\mathrm{V}_{\mathrm{SS}} ; \mathrm{XTAL2}=\mathrm{N} . \mathrm{C} . ; \mathrm{XTAL} 1=\mathrm{V}_{\mathrm{SS}} ;$ all other pins are disconnected.

AC Characteristics

Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a ' t ' (stand for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
T: Time
V: Valid
W: WR signal
X: No longer a valid logic level
Z: Float
For example,
$\mathrm{t}_{\mathrm{A} V L L}=$ Time from Address Valid to ALE Low
tLLPL $=$ Time from ALE Low to PSEN Low

AC Characteristics for HMS99C5X series (12MHz version)

$V_{C C}=5 \mathrm{~V}: \quad V_{C C}=5 \mathrm{~V}+10 \%,-15 \% ; V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
(C_{L} for port 0 . ALE and PSEN outputs $=100 \mathrm{pF} ; \mathrm{C}_{\mathrm{L}}$ for all other outputs $=80 \mathrm{pF}$)
Variable clock: $\quad \mathrm{Vcc}=5 \mathrm{~V}: 1 / \mathrm{t} \mathrm{CLCL}=3.5 \mathrm{MHz}$ to 12 MHz

External Program Memory Characteristics

Parameter	Symbol	12 MHz Oscillator		Variable Oscillator $1 / \mathrm{t}$ CLCL $=3.5$ to 12 MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	127	-	2tclcl-40	-	ns
Address setup to ALE	$\mathrm{t}_{\text {AVLL }}$	43	-	tclcl-40	-	ns
Address hold after ALE	tLLAX	30	-	tclcl-53	-	ns
ALE low to valid instruction in	tuliv	-	233	-	4tclcl-100	ns
ALE to $\overline{\text { PSEN }}$	tLLPL	58	-	tclCL-25	-	ns
PSEN pulse width	tPLPH	215	-	3tclcl-35	-	ns
$\overline{\text { PSEN }}$ to valid instruction in	tpliv	-	150	-	$3 \mathrm{t}_{\text {clcl- }} 100$	ns
Input instruction hold after PSEN	tpXIX	0	-	0	-	ns
Input instruction float after $\overline{\text { PSEN }}$	$t_{\text {PXIZ }}{ }^{\dagger}$	-	63	-	tclcl-20	ns
Address valid after PSEN	tPXAV^{\dagger}	75	-	tCLCL-8	-	ns
Address to valid instruction in	taviv	-	302	-	$5 t_{\text {CLCL- }} 115$	ns
Address float to $\overline{\text { PSEN }}$	$t_{\text {AZPL }}$	0	-	0	-	ns

[^0]AC Characteristics for HMS99C5X series (12MHz)
External Data Memory Characteristics

Parameter	Symbol	12 MHz Oscillator		Variable Oscillator $1 / \mathrm{t}$ CLCL $=3.5$ to 12 MHz		Unit
		Min.	Max.	Min.	Max.	
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {RLRH }}$	400	-	6tclcl-100	-	ns
$\overline{\text { WR pulse width }}$	tWLWH	400	-	6tclcl-100	-	ns
Address hold after ALE	tLLAX2	53	-	tclcl-30	-	ns
$\overline{\mathrm{RD}}$ to valid data in	trLDV	-	252	-	5tclcl-165	ns
Data hold after $\overline{\mathrm{RD}}$	$t_{\text {RHDX }}$	0	-	0	-	ns
Data float after $\overline{\mathrm{RD}}$	trhDZ	-	97	-	2tcLCl-70	ns
ALE to valid data in	tLLDV	-	517	-	8tclcl-150	ns
Address to valid data in	tavDV	-	585	-	9tclcl-165	ns
ALE to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	tLLWL	200	300	3tclcl-50	3tCLCL+50	ns
Address valid to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	$\mathrm{t}_{\text {AVWL }}$	203	-	4tclcl-130	-	ns
$\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ high to ALE high	twhLH	43	123	tclcl-40	tclcl+40	ns
Data valid to $\overline{\mathrm{WR}}$ transition	tQvwx	33	-	tclcl-50	-	ns
Data setup before $\overline{W R}$	tQVWH	433	-	7t ${ }_{\text {CLCL- }}$ 150	-	ns
Data hold after $\overline{\mathrm{WR}}$	tWHQX	33	-	tclcl-50	-	ns
Address float after $\overline{\mathrm{RD}}$	trLAZ	-	0	-	0	ns

Advance Information (12MHz)

External Clock Drive

Parameter	Symbol	Variable Oscillator (Freq. $=3.5$ to 12 MHz)		Unit
		Min.	Max.	
Oscillator period ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)	tclcl	83.3	285.7	ns
High time	tCHCX	20	tclcl-t ${ }^{\text {clCx }}$	ns
Low time	tcLCX	20	$\mathrm{t}_{\text {CLCL }}$ - $\mathrm{t}_{\text {CHCX }}$	ns
Rise time	tclch	-	20	ns
Fall time	tchCL	-	20	ns

AC Characteristics for HMS99C5X series (24MHz version)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}+10 \%,-15 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
(C_{L} for port 0 . ALE and $\overline{\text { PSEN }}$ outputs $=100 \mathrm{pF} ; \mathrm{C}_{\mathrm{L}}$ for all other outputs $=80 \mathrm{pF}$)
External Program Memory Characteristics

Parameter	Symbol	24 MHz Oscillator		Variable Oscillator $1 / \mathrm{t}$ CLCL $=3.5$ to 24 MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	43	-	2tclcl-40	-	ns
Address setup to ALE	$\mathrm{t}_{\text {AVLL }}$	17	-	tclcl-25	-	ns
Address hold after ALE	tLLAX	17	-	tclcl-25	-	ns
ALE low to valid instruction in	tuliv	-	80	-	4tCLCL-87	ns
ALE to $\overline{\text { PSEN }}$	tLLPL	22	-	tclcl-20	-	ns
$\overline{\text { PSEN }}$ pulse width	tPLPH	95	-	3tclcl-30	-	ns
$\overline{\text { PSEN }}$ to valid instruction in	tPLIV	-	60	-	3tclcl-65	ns
Input instruction hold after $\overline{\text { PSEN }}$	tpXIX	0	-	0	-	ns
Input instruction float after $\overline{\text { PSEN }}$	tpxiz †	-	32	-	tclcl-10	ns
Address valid after $\overline{\text { PSEN }}$	$\operatorname{tPXAV}^{\dagger}$	37	-	${ }_{\text {tcLCL-5 }}$	-	ns
Address to valid instruction in	taviv	-	148	-	5tclcl-60	ns
Address float to $\overline{\text { PSEN }}$	$t_{\text {AZPL }}$	0	-	0	-	ns

\dagger Interfacing the HMS99C5X series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

AC Characteristics for HMS99C5X series (24MHz)

External Data Memory Characteristics

Parameter	Symbol	24 MHz Oscillator		Variable Oscillator $1 / \mathrm{t}$ CLCL $=3.5$ to 24 MHz		Unit
		Min.	Max.	Min.	Max.	
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {RLRH }}$	180	-	$6 \mathrm{tclcl}-70$	-	ns
$\overline{\text { WR pulse width }}$	tWLWH	180	-	6tclcl-70	-	ns
Address hold after ALE	tLLAX2	15	-	tclcl-27	-	ns
$\overline{\mathrm{RD}}$ to valid data in	trLDV	-	118	-	5tcLCl-90	ns
Data hold after $\overline{\mathrm{RD}}$	$t_{\text {RHDX }}$	0	-	0	-	ns
Data float after $\overline{\mathrm{RD}}$	trhDZ	-	63	-	2tcLCl-20	ns
ALE to valid data in	tLLDV	-	200	-	8tclcl-133	ns
Address to valid data in	tavDV	-	220	-	9tclcl-155	ns
ALE to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	tLLWL	75	175	$3 \mathrm{tclcl}-50$	3tCLCL+50	ns
Address valid to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	$\mathrm{t}_{\text {AVWL }}$	67	-	4tclcl-97	-	ns
$\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ high to ALE high	twhLH	17	67	tclcl-25	tclcl+25	ns
Data valid to $\overline{\mathrm{WR}}$ transition	tQvwx	5	-	tCLCL-37	-	ns
Data setup before $\overline{W R}$	tovwh	170	-	7tclcl-122	-	ns
Data hold after $\overline{\mathrm{WR}}$	tWHQX	15	-	tCLCL-27	-	ns
Address float after $\overline{\mathrm{RD}}$	trLAZ	-	0	-	0	ns

Advance Information (24MHz)

External Clock Drive

Parameter	Symbol	Variable Oscillator (Freq. $=3.5$ to 24 MHz)		Unit
		Min.	Max.	
Oscillator period	tclcl	41.7	285.7	ns
High time	$t_{\text {chex }}$	12	tclcl-tclex	ns
Low time	tclcx	12	tCLCL - ${ }_{\text {chex }}$	ns
Rise time	tclch	-	12	ns
Fall time	tCHCL	-	12	ns

AC Characteristics for HMS99C5X series (40MHz version)

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}+10 \%,-15 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$\left(\mathrm{C}_{\mathrm{L}}\right.$ for port 0 . ALE and $\overline{\text { PSEN }}$ outputs $=100 \mathrm{pF} ; \mathrm{C}_{\mathrm{L}}$ for all other outputs $\left.=80 \mathrm{pF}\right)$
External Program Memory Characteristics

Parameter	Symbol	40 MHz Oscillator		Variable Oscillator $1 / \mathrm{t}$ CLCL $=3.5$ to 40 MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	40	-	2tclcl-20	-	ns
Address setup to ALE	$\mathrm{t}_{\text {AVLL }}$	10	-	tclcl-20	-	ns
Address hold after ALE	tLLAX	10	-	tclcl-20	-	ns
ALE low to valid instruction in	tuliv	-	56	-	4tcLCL-65	ns
ALE to $\overline{\text { PSEN }}$	tLLPL	15	-	tclcl-15	-	ns
$\overline{\text { PSEN }}$ pulse width	tPLPH	80	-	3tCLCL-20	-	ns
$\overline{\text { PSEN }}$ to valid instruction in	tpLIV	-	35	-	3tcLCL-55	ns
Input instruction hold after $\overline{\text { PSEN }}$	tPxix	0	-	0	-	ns
Input instruction float after $\overline{\text { PSEN }}$	tPXIZ^{\dagger}	-	20	-	tclcl-10	ns
Address valid after $\overline{\text { PSEN }}$	$\operatorname{tPXAV}^{\dagger}$	25	-	tcLCL-5	-	ns
Address to valid instruction in	$\mathrm{t}_{\text {AVIV }}$	-	91	-	5tcLCL-60	ns
Address float to $\overline{\text { PSEN }}$	$\mathrm{t}_{\text {AZPL }}$	0	-	0	-	ns

\dagger Interfacing the HMS99C5X series to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

AC Characteristics for HMS99C5X series (40MHz)
External Data Memory Characteristics

Parameter	Symbol	at 40 MHz Clock		Variable Clock $1 / \mathrm{t}$ CLCL $=3.5$ to 40 MHz		Unit
		Min.	Max.	Min.	Max.	
$\overline{\mathrm{RD}}$ pulse width	$t_{\text {RLRH }}$	132	-	6tclcl-50	-	ns
$\overline{\text { WR pulse width }}$	tWLWH	132	-	6tclcl-50	-	ns
Address hold after ALE	tLLAX2	10	-	tclcl-20	-	ns
$\overline{\mathrm{RD}}$ to valid data in	trLDV	-	81	-	5tclcl-70	ns
Data hold after $\overline{\mathrm{RD}}$	$\mathrm{t}_{\text {RHDX }}$	0	-	0	-	ns
Data float after $\overline{\mathrm{RD}}$	trHDZ	-	46	-	2tclcl-15	ns
ALE to valid data in	tLLDV	-	153	-	8tCLCL-90	ns
Address to valid data in	tavDV	-	183	-	9tclcl-90	ns
ALE to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	tLLWL	71	111	3tclcl-20	$3 \mathrm{tcLCL}+20$	ns
Address valid to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	$\mathrm{t}_{\text {AVWL }}$	66	-	4tclcl-55	-	ns
$\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ high to ALE high	twhLH	10	40	tclcl-20	tclcle 20	ns
Data valid to $\overline{\mathrm{WR}}$ transition	tQvwx	5	-	tclcl-25	-	ns
Data setup before $\overline{W R}$	tovwh	142	-	7tclcl-70	-	ns
Data hold after $\overline{\mathrm{WR}}$	twhQx	10	-	tclcl-20	-	ns
Address float after $\overline{\mathrm{RD}}$	trLAZ	-	0	-	0	ns

Advance Information (40MHz)

External Clock Drive

Parameter	Symbol	Variable Oscillator (Freq. $=3.5$ to 40MHz)		Unit
		Min.	Max.	
Oscillator period	tclcl	30.3	285.7	ns
High time	$t_{\text {chex }}$	11.5	tclcl-tclex	ns
Low time	tclcx	11.5	tCLCL - $\mathrm{t}_{\text {CHCX }}$	ns
Rise time	tclch	-	5	ns
Fall time	tCHCL	-	5	ns

Figure 6. External Program Memory Read Cycle

Figure 7. External Data Memory Read Cycle

Figure 8. External Data Memory Write Cycle

AC Inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ for a logic ' 1 ' and 0.45 V for a logic ' 0 '.
Timing measurements are made a $\mathrm{V}_{\mathrm{IH} \min }$ for a logic ' 1 ' and $\mathrm{V}_{\text {ILmax }}$ for a logic ' 0 '.

Figure 9. AC Testing: Input, Output Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs.
$\mathrm{loL} / \mathrm{IOH} \geq 20 \mathrm{~mA}$.

Figure 10. Float Waveforms

Figure 11. External Clock Cycle

OSCILLATOR CIRCUIT

C1, C2 $=30 \mathrm{pF} \pm 10 \mathrm{pF}$ for Crystals
For Ceramic Resonators, contact resonator manufacturer.

Figure 12. Recommended Oscillator Circuits
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Plastic Package P-LCC-44

(Plastic Leaded Chip-Carrier)

Plastic Package P-DIP-40

(Plastic Dual in-Line Package)

40DIP

UNIT: INCH

Plastic Package P-MPQF-44

(Plastic Metric Quad Flat Package)

DETAIL "A"

[^0]: \dagger Interfacing the HMS99C5X series to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

